On the diurnal variability of particle properties related to light absorbing carbon in Mexico City

نویسندگان

  • D. Baumgardner
  • G. L. Kok
  • G. B. Raga
چکیده

The mass of light absorbing carbon (LAC) in individual, internally mixed aerosol particles was measured with the Single Particle Soot Photometer (SP2) in April of 2003 and 2005 and evaluated with respect to concentrations of carbon monoxide (CO), particle bound polycyclic aromatic hydrocarbons (PPAH) and condensation nuclei (CN). The LAC and CO have matching diurnal trends that are linked to traffic patterns and boundary layer growth. The PPAH reaches a maximum at the same time as CO and LAC but returns rapidly back to nighttime values within three hours of the peak. The number of particles containing LAC ranges between 10% to 40% of all particles between 150 nm and 650 nm and the mass is between 5% and 25% of the total mass in this size range. The average LAC equivalent mass diameter varies between 160 and 230 nm and the thinnest coating of non-light absorbing material is observed during periods of maximum LAC mass. The coating varies between 10 nm and 30 nm during the day, but is a strong function of particle size. The mass absorption cross sections, σabs, derived from the SP2, are 5.0±0.2 m2g−1 and 4.8±0.2 m2g−1, dependent on the optical model used to describe LAC mixtures. The LAC contributes up to 50% of the total light extinction in the size range from 100 nm to 400 nm. The estimated emission rate of LAC is 1200 metric tons per year in Mexico City, based upon the SP2 measurements and correlations between LAC and CO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial and temporal variability of particulate polycyclic aromatic hydrocarbons in Mexico City

As part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) study in the Mexico City Metropolitan Area in March 2006, we measured particulate polycyclic aromatic hydrocarbons (PAHs) and other gaseous species and particulate properties, including light absorbing carbon or effective black carbon (BC), at six locations throughout the city. The measurements were intended ...

متن کامل

Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry

Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Abstract Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion EGU Abstract Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS) were carried out in an industrial/residential section in the nor...

متن کامل

Effect of carbon black content on the microwave absorbing properties of CB/epoxy composites

To prevent serious electromagnetic interference, a single-layer and double layer wave-absorbing coating employing complex absorbents composed of carbon black with epoxy resin as matrix was prepared. The morphologies of carbon black /epoxy composites were characterized by scanning electron microscope  and atomic force microscope, respectively. The carbon black  particles exhibit obvious polyarom...

متن کامل

Investigation on magnetic and microwave behavior of magnetite nanoparticles coated carbon fibers composite

Radar absorbing materials, i.e. magnetite (Fe3O4) coated carbon fibers (MCCFs) were fabricated by electro-deposition technique. Black-colored single spinel phase Fe3O4 nanoparticles was easily synthesized by hydrothermal method using reduction of a Fe (III) - Triethanolamine complex in an aqueous alkaline solution at 60-80 ◦C. Uniform and compact Fe3O4 films were fabricated on nitric acid treat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007